Philips Semiconductors
Product specification
TOPFET high side switch
SMD version
BUK216-50YT
QUICK REFERENCE DATA
DESCRIPTION
Monolithic single channel high side
protected power switch in
TOPFET2 technology assembled in
a 5 pin plastic surface mount
package.
SYMBOL
PARAMETER
MAX.
50
UNIT
V
VBG
IL
Continuous off-state supply voltage
Continuous load current
10
A
APPLICATIONS
Tj
Continuous junction temperature
150
20
˚C
General controller for driving
lamps, motors, solenoids, heaters.
RON
On-state resistance
Tj = 25˚C
mΩ
FEATURES
FUNCTIONAL BLOCK DIAGRAM
Vertical power TrenchMOS
Low on-state resistance
CMOS logic compatible
Very low quiescent current
Latched overtemperature
protection
BATT
STATUS
POWER
Load current limiting
at reduced level
MOSFET
INPUT
Short circuit load detection
Overvoltage and undervoltage
shutdown with hysteresis
Diagnostic status indication
Voltage clamping for turn off
of inductive loads
CONTROL &
PROTECTION
CIRCUITS
ESD protection on all pins
Reverse battery, overvoltage
and transient protection
LOAD
GROUND
RG
Fig.1. Elements of the TOPFET HSS with internal ground resistor.
PINNING - SOT426
PIN CONFIGURATION
SYMBOL
PIN
1
DESCRIPTION
Ground
mb
B
I
2
Input
TOPFET
HSS
G
L
3
(connected to mb)
Status
S
3
4
1 2
4 5
5
Load
Fig. 2.
Fig. 3.
mb Battery
March 2002
1
Rev 1.200
Philips Semiconductors
Product specification
TOPFET high side switch
SMD version
BUK216-50YT
STATIC CHARACTERISTICS
Limits are at -40˚C ≤ Tmb ≤ 150˚C and typicals at Tmb = 25˚C unless otherwise stated.
SYMBOL PARAMETER
Clamping voltages
Battery to ground
CONDITIONS
MIN. TYP. MAX. UNIT
VBG
VBL
IG = 1 mA
50
50
18
20
55
55
23
25
65
65
28
30
V
V
V
V
Battery to load
IL = IG = 1 mA
IL = 10 mA
-VLG
-VLG
Negative load to ground
Negative load voltage1
IL = 15 A; tp = 300 µs
Supply voltage
battery to ground
VBG
Operating range2
5.5
-
35
V
Currents
Quiescent current3
9 V ≤ VBG ≤ 16 V
VLG = 0 V
IB
IL
-
-
-
-
-
-
-
0.1
-
20
2
µA
µA
µA
µA
mA
A
Tmb = 25˚C
Tmb = 25˚C
Tmb = 85˚C
Off-state load current4
VBL = VBG
20
1
0.1
2
IG
IL
Operating current5
Nominal load current6
IL = 0 A
4
VBL = 0.5 V
-
-
Resistances
VBG
IL
tp7
Tmb
RON
RON
On-state resistance
9 to 35 V
5 A
300 µs
25˚C
150˚C
25˚C
-
-
-
-
15
-
20
37
25
45
mΩ
mΩ
mΩ
mΩ
On-state resistance
6 V
5 A
300 µs
18
-
150˚C
RG
Internal ground resistance
IG = 10 mA
95
150
190
Ω
1 For a high side switch, the load pin voltage goes negative with respect to ground during the turn-off of an inductive load.
2 On-state resistance is increased if the supply voltage is less than 9 V. Refer to figure 8.
3 This is the continuous current drawn from the supply when the input is low and includes leakage current to the load.
4 The measured current is in the load pin only.
5 This is the continuous current drawn from the supply with no load connected, but with the input high.
6 Defined as in ISO 10483-1. Because of current limiting, this parameter is not applicable.
7 The supply and input voltage for the RON tests are continuous. The specified pulse duration tp refers only to the applied load current.
March 2002
3
Rev 1.200
Philips Semiconductors
Product specification
TOPFET high side switch
SMD version
BUK216-50YT
INPUT CHARACTERISTICS
9 V ≤ VBG ≤ 16 V. Limits are at -40˚C ≤ Tmb ≤ 150˚C and typicals at Tmb = 25 ˚C unless otherwise stated.
SYMBOL PARAMETER
CONDITIONS
MIN. TYP. MAX. UNIT
II
Input current
VIG = 5 V
20
5.5
-
90
7
160
µA
V
VIG
Input clamping voltage
Input turn-on threshold voltage
Input turn-off threshold voltage
Input turn-on hysteresis
Input turn-on current
II = 200 µA
8.5
VIG(ON)
VIG(OFF)
∆VIG
II(ON)
II(OFF)
2.4
2.1
0.3
-
3
V
1.5
-
-
V
-
100
-
V
VIG = 3 V
-
µA
µA
Input turn-off current
VIG = 1.5 V
10
-
STATUS CHARACTERISTICS
The status output is an open drain transistor, and requires an external pull-up circuit to indicate a logic high.
Limits are at -40˚C ≤ Tmb ≤ 150˚C and typicals at Tmb = 25 ˚C unless otherwise stated. Refer to TRUTH TABLE.
SYMBOL PARAMETER
CONDITIONS
MIN. TYP. MAX. UNIT
VSG
VSG
Status clamping voltage
IS = 100 µA
IS = 100 µA
5.5
7
-
8.5
1
V
V
V
Status low voltage
-
-
Tmb = 25˚C
Tmb = 25˚C
0.7
0.8
IS
IS
Status leakage current
VSG = 5 V
VSG = 5 V
-
-
-
0.1
7
15
1
µA
µA
mA
Status saturation current1
2
12
Application information
RS
External pull-up resistor
-
47
-
kΩ
1 In a fault condition with the pull-up resistor short circuited while the status transistor is conducting. This condition should be avoided in order to
prevent possible interference with normal operation of the device.
March 2002
4
Rev 1.200
Philips Semiconductors
Product specification
TOPFET high side switch
SMD version
BUK216-50YT
UNDERVOLTAGE & OVERVOLTAGE CHARACTERISTICS
Limits are at -40˚C ≤ Tmb ≤ 150˚C and typicals at Tmb = 25 ˚C. Refer to TRUTH TABLE.
SYMBOL PARAMETER
CONDITIONS
MIN. TYP. MAX. UNIT
Undervoltage
VBG(UV)
Low supply threshold voltage1
2
-
4.2
0.5
5.5
-
V
V
∆VBG(UV)
Hysteresis
Overvoltage
VBG(OV)
High supply threshold voltage2
Hysteresis
35
-
45
1
50
-
V
V
∆VBG(OV)
TRUTH TABLE
ABNORMAL CONDITIONS
DETECTED
LOAD
OUTPUT
OT
INPUT
SUPPLY
LOAD
STATUS
DESCRIPTION
UV
OV
X
0
LC
X
SC
X
0
L
X
0
1
0
0
0
X
0
X
0
0
1
OFF
ON
H
H
H
H
L
off
H
H
H
H
H
X
on & normal (LC not detected!)
supply undervoltage lockout
supply overvoltage shutdown
SC detected (without trip)
OT shutdown
0
X
X
0
OFF
OFF
ON
1
X
0
0
1
0
X
X
OFF
L
KEY TO ABBREVIATIONS
L
H
X
0
logic low
UV undervoltage
OV overvoltage
logic high
don’t care
condition not present
condition present
LC low current or open circuit load
SC short circuit
1
OT overtemperature
1 Undervoltage sensor causes the device to switch off and reset.
2 Overvoltage sensor causes the device to switch off to protect its load.
March 2002
5
Rev 1.200
Philips Semiconductors
Product specification
TOPFET high side switch
SMD version
BUK216-50YT
OVERLOAD PROTECTION / DETECTION CHARACTERISTICS
6 V ≤ VBG ≤ 35 V, limits are at -40˚C ≤ Tmb ≤ 150˚C and typicals at Tmb = 25 ˚C unless otherwise stated.
Refer to TRUTH TABLE.
SYMBOL PARAMETER
CONDITIONS
MIN. TYP. MAX. UNIT
Overload protection
VBL = VBG
IL(lim)
Load current limiting
VBG ≥ 9 V
10
15
21
A
Short circuit load detection
Status indication only
VBL(TO)
Battery load threshold voltage1
VBG = 16 V
VBG = 35 V
8
10
20
12
25
V
V
15
Overtemperature protection
Tj(TO)
Threshold junction
temperature2
150
170
190
˚C
SWITCHING CHARACTERISTICS
Tmb = 25 ˚C, VBG = 13 V, for resistive load RL = 13 Ω.
SYMBOL PARAMETER
CONDITIONS
MIN. TYP. MAX. UNIT
During turn-on
from input going high
to 10% VL
td on
Delay time
-
-
40
60
1
µs
V/µs
dV/dton
Rate of rise of load voltage
30% to 70% VL
0.5
t on
Total switching time
to 90% VL
-
160
225
µs
During turn-off3
from input going low
to 90% VL
td off
Delay time
-
-
-
70
0.5
95
100
1
µs
V/µs
µs
dV/dtoff
t off
Rate of fall of load voltage
Total switching time
70% to 30% VL
to 10% VL
130
CAPACITANCES
Tmb = 25 ˚C; f = 1 MHz; VIG = 0 V. designed in parameters.
SYMBOL PARAMETER
CONDITIONS
VBG = 13 V
VBL = 13 V
VSG = 5 V
MIN. TYP. MAX. UNIT
Cig
Cbl
Csg
Input capacitance
Output capacitance
Status capacitance
-
-
-
15
425
11
20
600
15
pF
pF
pF
1 The battery to load threshold voltage for short circuit detection is proportional to the battery supply voltage.
2 Latched protection. After cooling below the threshold temperature the switch will resume normal operation only after the input has been
toggled low.
3 For measurement purposes an Input pulse of 1.5ms is used to ensure the device is stabilised in the on state.
March 2002
6
Rev 1.200
Philips Semiconductors
Product specification
TOPFET high side switch
SMD version
BUK216-50YT
MECHANICAL DATA
2
Plastic single-ended surface mounted package (Philips version of D -PAK); 5 leads
(one lead cropped)
SOT426
A
A
E
1
D
1
mounting
base
D
H
D
3
L
p
1
2
4
5
b
c
e
e
e
e
Q
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
D
A
A
L
H
Q
UNIT
b
c
D
E
e
1
p
D
1
max.
1.40
1.27
4.50
4.10
0.85
0.60
0.64
0.46
2.90 15.80 2.60
2.10 14.80 2.20
1.60
1.20
10.30
9.70
mm
11
1.70
REFERENCES
JEDEC
EUROPEAN
PROJECTION
OUTLINE
VERSION
ISSUE DATE
IEC
EIAJ
98-12-14
99-06-25
SOT426
Fig.4. SOT426 surface mounting package1, centre pin connected to mounting base.
1 Epoxy meets UL94 V0 at 1/8". Net mass: 1.5 g.
For soldering guidelines and SMD footprint design, please refer to Data Handbook SC18.
March 2002
7
Rev 1.200
Philips Semiconductors
Product specification
TOPFET high side switch
SMD version
BUK216-50YT
DEFINITIONS
DATA SHEET STATUS
DATA SHEET
STATUS1
PRODUCT
STATUS2
DEFINITIONS
Objective data
Development
This data sheet contains data from the objective specification for
product development. Philips Semiconductors reserves the right to
change the specification in any manner without notice
Preliminary data
Qualification
This data sheet contains data from the preliminary specification.
Supplementary data will be published at a later date. Philips
Semiconductors reserves the right to change the specification without
notice, in order to improve the design and supply the best possible
product
Product data
Production
This data sheet contains data from the product specification. Philips
Semiconductors reserves the right to make changes at any time in
order to improve the design, manufacturing and supply. Changes will
be communicated according to the Customer Product/Process
Change Notification (CPCN) procedure SNW-SQ-650A
Limiting values
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and
operation of the device at these or at any other conditions above those given in the Characteristics sections of
this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
Philips Electronics N.V. 2002
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the
copyright owner.
The information presented in this document does not form part of any quotation or contract, it is believed to be
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under patent or other
industrial or intellectual property rights.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices or systems where malfunction of these
products can be reasonably expected to result in personal injury. Philips customers using or selling these products
for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting
from such improper use or sale.
1 Please consult the most recently issued datasheet before initiating or completing a design.
2 The product status of the device(s) described in this datasheet may have changed since this datasheet was published. The latest information is
March 2002
8
Rev 1.200
|